次の極限を求めよ。
```
\[ \lim_{n \to \infty} \frac{1}{n} \]
```
解答
$\displaystyle \lim_{n \to \infty} \frac{1}{n} = 0$
解答
$\displaystyle \lim_{n \to \infty} \frac{1}{n} = 0$
解答
\begin{align}
\lim_{n \to \infty} \frac{1+2+\cdots + n}{n^2}
&= \lim_{n \to \infty} \frac{1}{2}n(n+1)\cdot \frac{1}{n^2}\
&= \lim_{n \to \infty} \frac{1}{2}\cdot 1 \cdot \left( 1 + \frac{1}{n}\right)\
&= \frac{1}{2}
\end{align}